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Abstract. We study the stationary properties and the state transition of the tumor cell growth model
(the logistic model) in presence of correlated noises for the case of nonzero correlation time. We derived
an approximative Fokker-Planck equation and the stationary probability distribution (SPD) of the model.
Based the SPD, we investigated the effects of both correlation strength (λ) and correlation time (τ ) of
cross-correlated noises on the SPD, the mean of the tumor cell population and the normalized variance
(λ2) of the system, and calculated the state transition rate of the system between two stable states. Our
results indicate that: (i) λ and τ play opposite roles in the stationary properties and the state transition
of the system, i.e. increase of λ can produce a smaller mean value of the cell population and slow down
the state transition, but increase of τ can produce a larger mean value of the cell population and enhance
state transition; (ii) For large λ, there a peak structure on both λ2-λ plot and λ2-τ plot. For the small λ,
λ2 increases with increasing λ, but λ2 increases with decreasing τ .

PACS. 87.10.+e General theory and mathematical aspects – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 02.50.Ey Stochastic processes

1 Introduction

Since Fulinski and Telejko pointed out that noises in some
stochastic processes may have a common origin and thus
can be cross-correlated [1], the cross-correlated noise pro-
cesses have been studied widely in the single mode laser
system [2,3], the bistable system [4–11] and the biology
system [12–15]. The effects of correlations between addi-
tive and multiplicative noises, either on a stationary state
or on dynamics of the system, have been extensively stud-
ied. Recently, Ai et al. studied the steady-state properties
of a tumor cell growth model in the presence of cross-
correlated additive and multiplicative noises for the case
of zero cross-correlated time between noises [12].

The logistic growth model,

dx

dt
= ax − bx2, (1)

has been used as a basic model of the cell growth, such
as tumor cell growth [16,17]. Here x is the tumor mass
(or denotes tumor cell population), a the cell growth rate
and b the cell decay rate. The cell growth rate a and the
decay rate b are always not constants, which are strongly
influenced by the fluctuations of some external factors,
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such as temperature, drugs, radiotherapy and so on. Con-
sidering the stochastic properties of fluctuations of these
external factors, physically it is reasonable and simple that
the effects of these external factors are modelled by both
multiplicative and additive noises. For instance, Ai et al.
consider that the fluctuation of some external factors af-
fect the growth rate a generating multiplicative noise, and
some factors such as drugs and radiotherapy restrain the
number of tumor cells, giving rise to a negative additive
noise, and obtained [12],

dx

dt
= ax − bx2 + xε(t) − Γ (t), (2)

where ε(t) and Γ (t) are Gaussian white noises with zero
mean, and

〈ε(t)ε(t′)〉 = 2Dδ(t − t′), (3)

〈Γ (t)Γ (t′)〉 = 2αδ(t − t′). (4)

〈ε(t)Γ (t′)〉 = 2λ
√

Dαδ(t − t′), (5)

where α and D are the additive and multiplicative noise
intensities, respectively. λ denotes the degree of correla-
tion between ε(t) and Γ (t) with 0 ≤ λ < 1. Apparently,
equation (5) only describes the case of the zero correlation
time between additive and multiplicative noises.

Physically, the correlation time of a real noise, though
small it may be, is never strictly equal to zero. For a
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noise with zero correlation time, its power spectral dis-
tribution, which is given by the Fourier transform of its
correlation function, is independent on frequency. Thus
the total power dissipated in all frequencies is infinite,
but the actual power dissipated would be somewhat less
than infinite. In other words, it appears as an idealiza-
tion, only valid when the time scale for its correlation is
much shorter than the time scale for the relaxation of the
driven process. On the other hand, the assumption that
the correlation time is zero is usually adopted as a first
step in studying the system driven by noises. Afterwards
it is reasonable to relax this condition and include the fi-
nite correlation time [18]. In this paper, we study the sta-
tionary properties and transient properties of the tumor
cell growth model in the presence of correlated additive
and multiplicative noises for the case of nonzero corre-
lated time between additive and multiplicative noises.

2 The stationary properties and the transition
rate of the system

In order to investigate stationary properties and calculate
the state transition rate of the system, we need the station-
ary probability distribution (SPD) of the system. We de-
rive the approximative Fokker-Planck equation (AFPE) of
the general system, then apply it to the tumor cell growth
model to get SPD.

2.1 The approximative Fokker-Planck equation
and the stationary probability distribution
of the system

The Langevin equation of the general system subject to
correlated noises reads

dx

dt
= f(x) + g1(x)ε(t) + g2(x)η(t), (6)

here ε(t) and η(t) are zero-mean Gaussian noise, whose
statistical properties are

γ11 = 〈ε(t)ε(t′)〉 = 2αδ(t − t′), (7)

γ22 = 〈η(t)η(t′)〉 = 2Dδ(t − t′), (8)

and

γ12 = γ21 = 〈ε(t)η(t′)〉 = 〈η(t)ε(t′)〉

=
λ
√

αD

τ
exp[−|t−t′|/τ ] → 2λ

√
αDδ(t−t′) as τ → 0,

(9)

where α and D are the additive and multiplicative noise
intensities, respectively. τ is correlation time of correla-
tion between additive and multiplicative noises. The pa-
rameter λ denotes the degree of correlation between ε(t)
and η(t).

A general equation satisfied by the probability distri-
bution of the process with equations (6–9) is given by [19]

∂

∂t
P (x, t) = − ∂

∂x
f(x)P (x, t) − ∂

∂x
g1(x)〈ε(t)δ(x(t) − x)〉

− ∂

∂x
g2(x)〈η(t)δ(x(t) − x)〉, (10)

where P (x, t) = 〈δ(x(t) − x)〉 is Van Kampen’s lemma.
The average 〈ε(t)δ(x(t)−x)〉 and 〈η(t)δ(x(t)−x)〉 in equa-
tion (10) can be calculated by the Novikov theorem [20]

〈ε(t)kφ[ε1, ε2]〉 =
∫ t

0

dt′γk,l〈δ(φ[ε1, ε2])
δεl

〉, (k, l = 1, 2),

(11)
where φ[ε1, ε2] is the functional of ε1 and ε2, here ε1 and ε2
are Gaussian noises and γk,l are their correlation func-
tions. The AFPE for equation (6) is obtained following [7]

∂

∂t
P (x, t) = − ∂

∂x
f(x)P (x, t) + D

∂

∂x
g1(x)

∂

∂x
g1(x)P (x, t)

+
λ
√

Dα

1 − τ [f ′(xs) − (g′2(xs)/g2(xs))f(xs)]

× ∂

∂x
g1(x)

∂

∂x
g2(x)P (x, t) + α

∂

∂x
g2(x)

∂

∂x
g2(x)P (x, t)

+
λ
√

Dα

1 − τ [f ′(xs) − (g′1(xs)/g1(xs))f(xs)]

× ∂

∂x
g2(x)

∂

∂x
g1(x)P (x, t). (12)

The AFPE is valid for the following conditions:

1 − τ

[
f ′(xs) − g′1(xs)

g1(xs)
f(xs)

]
> 0,

1 − τ

[
f ′(xs) − g′2(xs)

g2(xs)
f(xs)

]
> 0, (13)

where xs denotes the steady-state value of the determin-
istic theory. Equation (13) provide the constraint on τ .
There are the details of derivation of equations (12–13)
and about what the approximation is in reference [7].

We now consider the logistic model driven by cross-
correlated noises for the case of nonzero correlation time,
i.e., Langevin equation (2) with equations (7–9). This is a
special case of equation (6) with

f(x) = ax−bx2, g1(x) = x, g2(x) = 1 and η(t) = −Γ (t).
(14)

We must point out that equation (6) in reference [12]
is only a special case of equation (9) as τ −→ 0. The
potential

V (x) = −a

2
x2 +

b

3
x3, (15)

corresponding to equation (2) has two stable state x1 =
a/b, x2 = 0. If a −→ 0, the stable state x1 −→ x2. We
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take steady-state value xs = a/b. Therefore the AFPE of
the system (2) is obtained by substituting (14) into (12)

∂P (x, t)
∂t

= − ∂

∂x
A(x)P (x, t) +

∂2

∂x2
B(x)P (x, t), (16)

where

A(x) = ax − bx2 + Dx − λ
√

αD

1 + aτ
, (17)

and

B(x) = Dx2 − 2λ
√

αD

1 + aτ
x + α. (18)

Note that this AFPE holds under the condition 1+aτ > 0
for all the τ . Thus there is no restriction on τ so that there
is not any restriction on all the parameters treated in this
case. The stationary probability distribution of system
can be obtained from equation (16) with equations (17)
and (18)

P (x)st = NB(x)β1− 1
2 exp[−U(x)/D] for 0 ≤ λ < 1,

(19)
where

β1 =
a

2D
− λb

(1 + aτ)D

√
α

D
, (20)

and the generalized potential

U(x) = bx − β2(1 + aτ)√
Dα[(1 + aτ)2 − λ2]

× arctan

{
(1 + aτ)Dx − λ

√
Dα√

Dα[(1 + aτ)2 − λ2]

}
, (21)

here

β2 = bα −
(

aD +
2λ

1 + aτ

√
αD

)
λ

1 + aτ

√
α

D
. (22)

N in equation (19) is the normalization constant. It must
be pointed out that the correlation time τ must be zero
when the strength of the correlation between noises λ is
zero, however, the equation (19) is valid when τ = 0.
Above results fall back to equations (11–13) presented in
reference [12] by taking τ = 0.

2.2 The stationary properties of the system

By numerical calculation of equation (19), we analyze the
effects of both the correlation strength λ and the correla-
tion time τ on the SPD. In Figures 1a and 1b, we show
SPD as function of λ and τ , respectively. For fixed value
of the τ and increasing λ, P (x)st increases at small x, and
decreases at large x along with this peak disappearing.
For fixed value of the λ and decreasing τ , P (x)st increases
at small x and decreases at large x along with this peak
disappearing. Since x denotes the cell population, it is ob-
vious that the cell population decreases with the increas-
ing of λ and increases with the increasing of τ . We must
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Fig. 1. (a) Plot of stationary probability distribution P (x)st
vs. cell number x for different values of λ with τ = 0.3, D = 0.3,
α = 3.0, a = 1 and b = 0.1. (b) Plot of stationary probability
distribution P (x)st vs. cell number x for different values of τ
with λ = 0.2, D = 0.3, α = 3.0, a = 1 and b = 0.1.

point that above analysis only a qualitative discussion of
stationary properties of the system.

In order to quantitatively investigate the stationary
properties of the system, We introduce the moments of
the variable x, and it given by

〈xn〉st =

+∞∫

0

xnP (x)stdx. (23)

The mean of the state variable is

〈x〉st =

+∞∫

0

xP (x)stdx, (24)

and the normalized variance of the state variable is

λ2 =
〈(x − 〈x〉st)2〉

〈x〉2st
=

〈x2〉st
〈x〉2st

− 1. (25)
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Fig. 2. (a) Plot of the stationary mean value 〈x〉st of cell
number as a function of λ for different values of τ with D = 0.3,
α = 3.0, a = 1 and b = 0.1. (b) Plot of the stationary mean
value 〈x〉st of cell number as a function of τ for different values
of λ with D = 0.3, α = 3.0, a = 1 and b = 0.1.

Making use of the expressions of equations (24) and (25),
the effects of both λ and τ on 〈x〉st and λ2 can be analysed
by the numerical calculation. The results of the numerical
calculation of 〈x〉st and λ2 as a function of λ and τ are
plotted on Figures 2 and 3.

Figures 2a and 2b show that the larger λ is, the smaller
〈x〉st is. The larger τ is, the larger 〈x〉st is. This indicates
that the effects of both λ and τ on the cell population are
different. λ and τ play opposite roles on the cell popula-
tion. Also we see that the stationary mean value of the
cell population decreases with the increase of λ and that
increases with the increase of τ . We must point that we
have run many numerical integrations with many different
parameters, and that our final result (x decreases with λ
and increases with τ) is always true.
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Fig. 3. (a) Plot of the normalized variance λ2 of cell number as
a function of λ for different values of τ with D = 0.3, α = 3.0,
a = 1 and b = 0.1. (b) Plot of the normalized variance λ2 of
cell number as a function of τ for different values of λ with
D = 0.3, α = 3.0, a = 1 and b = 0.1.

As can be seen clearly from Figures 3a and 3b, the
curves of normalized variance λ2 exhibit a peak structure
and the peak position shifts to larger values of λ as in-
crease τ . For smaller λ, λ2 increases with the increase
of λ and increases with the decrease of τ . For larger λ,
λ2 decreases with increasing λ and that decreases with
decreasing τ . The effects of both λ and τ on the normal-
ized variance λ2 for the λ and for the τ are also opposite.

2.3 The state transition rate of the system

Our prime concern here is the transient properties of the
system, i.e., the system from a stable state x1, the larger
cell population state, transits to another stable state x2,
zero cell population state.

First, we consider the mean-first-passage time (MFPT)
of the system from x1 transiting to x2. The exact
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expression for the MFPT of the system to reach the fi-
nal point x2 from the initial point x1 is given by [21,22]

T (x1 → x2) =
∫ x2

x1

dx

B(x)P (x)st

∫ x

−∞
P (y)stdy. (26)

We choose x1 = a/b as the initial point, and x2 = 0 as
the final point. For the case of small α and D, making use
of the steepest-descent approximation to equation (26),
we obtain the explicit expression of MFPT [23,24]

T (a/b → 0) � 2π [ | V ′′(a/b)V ′′(0) | ]
1
2

× exp {[U(0) − U(a/b)]/D}

= 2πa exp

{
(1 + aτ)β2

D
√

Dα[(1 + aτ)2 − λ2]

×
{

arctan

{
(1 + aτ)a − λ

√
αD

b
√

Dα[(1 + aτ)2 − λ2]

}

+ arctan
λ
√

αD√
Dα[(1 + aτ)2 − λ2]

}
− a

D

}
.

(27)

Then, we get the state transition rate of x1 to x2 [18]

κ =
1

T (a/b → 0)
. (28)

According to the expression [Eq. (28)] of the transition
rate of x1 to x2 of the system, the effects of both λ and
τ on κ can be studied by the numerical computation. κ
as function of λ and κ as function of τ are plotted on
Figures 4a and 4b, respectively. From Figures 4a and 4b,
we can clearly see that κ decreases as λ increases, however
κ increases as τ increases. The effects of the λ on κ are
slowdown the system transition and these of τ are speedup
the system transition.

3 Discussion and conclusion

Based on considering the fluctuation of some external fac-
tors, such as temperature, drugs, radiotherapy, etc, ran-
dom factors are introduced into the cell growth model,
which can influence the cell population and alter the cell
growth rate. These stochastic characteristic are described
by a multiplicative noise and a additive noise. The mul-
tiplicative noise and the additive noise may be correlated
due to a common origin. If more fluctuations come of com-
mon origin, the correlation strength λ will take larger val-
ues. For the real physical process the correlated time τ be-
tween the multiplicative noise and the additive noise is not
zero. If fluctuations are more lager so that the time scale
for the relaxation of the driven process is more longer, a
nonzero correlated time must be considered.

In this paper, we have studied the effects of both the λ
and the τ on the stationary properties and state transition
rate of the tumor cell growth model driven by the cross-
correlated noises for the case of nonzero correlation time.
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Fig. 4. (a) Plot of the state transition rate of system as a
function of λ for different values of τ with D = 0.3, α = 0.2,
a = 1 and b = 0.1. (b) Plot of the state transition rate of
system as a function of τ for different values of λ with D = 0.3,
α = 0.2, a = 1 and b = 0.1.

We derived an approximative Fokker-Planck equation and
the stationary probability distribution of the system. Mak-
ing use of the SPD, we investigated effects of both λ and
τ on the mean of the tumor cell population 〈x〉st, the nor-
malized variance λ2, and the state transition rate of the
system.

The effects of the λ can produce smaller mean value
of the cell population, however, the effects of the τ pro-
duce larger mean value of the cell population. The λ is
slowdown the system transition, but,the τ is speedup the
system transition.
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